
SEQUENCE CONTROL

SEQUENCE CONTROL
Control Structure in a PL provides the basic framework within which operations

and data are combined into a program and sets of programs.

Sequence Control -> Control of the order of execution of the operations
Data Control -> Control of transmission of data among subprograms of

program

Sequence Control may be categorized into four groups:

1) Expressions – They form the building blocks for statements.
An expression is a combination of variable constants and operators
according to syntax of language. Properties as precedence rules and
parentheses determine how expressions are evaluated

1) Statements – The statements (conditional & iterative) determine how
control flows from one part of program to another.

2) Declarative Programming – This is an execution model of program which is
independent of the program statements. Logic programming model of
PROLOG.

3) Subprograms – In structured programming, program is divided into small
sections and each section is called subprogram. Subprogram calls and co-
routines, can be invoked repeatedly and transfer control from one part of
program to another.

IMPLICIT AND EXPLICIT SEQUENCE CONTROL
Implicit Sequence Control

Implicit or default sequence-control structures are those defined by the
programming language itself. These structures can be modified explicitly
by the programmer.
eg. Most languages define physical sequence as the sequence in which
statements are executed.

Explicit Sequence Control
Explicit sequence-control structures are those that programmer may
optionally use to modify the implicit sequence of operations defined by the
language.
eg. Use parentheses within expressions, or goto statements and labels

Sequence Control Within Expressions
Expression is a formula which uses operators and operands to give the output
value.
i) Arithmetic Expression –

An expression consisting of numerical values (any number, variable or
function call) together with some arithmetic operator is called “Arithmetic
Expression”.

Evaluation of Arithmetic Expression
Arithmetic Expressions are evaluated from left to right and using the rules
of precedence of operators.
If expression involves parentheses, the expression inside parentheses is
evaluated first

ii) Relational Expressions –
An expression involving a relational operator is known as “Relational
Expression”. A relational expression can be defined as a meaningful
combination of operands and relational operators.

(a + b) > c c < b
Evaluation of Relational Expression

The relational operators <, >, <=, >= are given the first priority and other
operators (== and !=) are given the second priority
The arithmetic operators have higher priority over relational operators.
The resulting expression will be of integer type, true = 1, false = 0

Sequence Control Within Expressions
iii) Logical Expression –

An expression involving logical operators is called ‘Logical
expression”. The expression formed with two or more
relational expression is called logical expression.

Ex. a > b && b < c
Evaluation of Logical Expression

The result of a logical expression is either true or false.
For expression involving AND (&&), OR (||) and NOT(!)
operations, expression involving NOT is evaluated first,
then the expression with AND and finally the expression
having OR is evaluated.

Sequence Control Within Expressions
1. Controlling the evaluation of expressions
a) Precedence (Priority)

If expression involving more than one operator is evaluated,
the operator at higher level of precedence is evaluated first

b) Associativity
The operators of the same precedence are evaluated either
from left to right or from right to left depending on the level

Most operators are evaluated from left to right except
+ (unary plus), - (unary minus) ++, --, !, &
Assignment operators = , +=, *=, /=, %=

Sequence Control Within Expressions
2. Expression Tree

An expression (Arithmetic, relational or logical) can be
represented in the form of an “expression tree”. The last or main
operator comes on the top (root).

Example: (a + b) * (c – d) can be represented as

X

+ -

a b dc

Sequence Control Within Expressions
3. Syntax for Expressions
a) Prefix or Polish notation

Named after polish mathematician Jan Lukasiewicz, refers to
notation in which operator symbol is placed before its operands.
*XY, -AB, /*ab-cd

Cambridge Polish - variant of notation used in LISP, parentheses
surround an operator and its arguments.
(/(*ab)(-cd))

b) Postfix or reverse polish
Postfix refers to notation in which the operator symbol is placed
after its two operands.
AB*, XY-

c) Infix notation
It is most suitable for binary (dyadic) operation. The operator
symbol is placed between the two operands.

Sequence Control Within Expressions
4. Semantics for Expressions

Semantics determine the order of expression in which they are evaluated.
a) Evaluation of Prefix Expression

If P is an expression evaluate using stack
i) If the next item in P is an operator, push it on the stack. set the arguments

count to be number of operands needed by operator.
(if number is n, operator is n-ary operator).

ii) If the next item in P is an operand, push it on the stack
iii) If the top n entries in the stack are operand entries needed for the last n-ary

operator on the stack, apply the operator on those operands. Replace the
operator and its n operands by the result of applying that operation on the
n operands.

b) Evaluation of Postfix Expression
If P is an expression evaluate using stack

i) If the next item in P is an operand, push it on the stack.
ii) If the next item in P is an n-ary operator, its n arguments must be top n

items on the stack. Replace these n items by the result of applying this
operation using the n items as arguments.

Sequence Control Within Expressions
c) Evaluation of Infix Expression

Infix notation is common but its use in expression cause the problems:
i) Infix notation is suitable only for binary operations. A language cannot use

only infix notation but must combine infix and postfix (or prefix) notations.
The mixture makes translation complex.

ii) If more than one infix operator is in an expression, the notation is ambiguous
unless parentheses are used.

Sequence Control Within Expressions
5. Execution-Time Representation:

Translators evaluate the expression using a method so as to get efficient result
(optimum value at optimum time with optimum use of memory and processor).
Translation is done in two phases –
In first phase the basic tree control structure for expression is established. In next
stage whole evaluation process takes place.
The following methods are used for translation of expression –

a) Machine code sequences
Expression can be translated into machine code directly performing the two
stages (control structure establishment and evaluation) in one step.
The ordering of m/c code instructions reflect the control sequence of original
expression.

b) Tree Structure
The expressions may be executed directly in tree structure representation using a
software interpreter.
This kind of evaluation used in SW interpreted languages like LISP where programs
are represented in the form of tree during execution

c) Prefix or postfix form

Problems with Evaluation of Expressions
1. Uniform Evaluation Code

Eager Evaluation Rule – For each operation node, first evaluate each of the operands,
then apply the operation to the evaluated operands.
The order of evaluations shouldn’t matter.

In C: A + (B = 0 ? C : C/B) --------- Problem
Lazy Evaluation Rule – Never evaluate operands before applying the operation. Pass
the operands unevaluated and let the operation decide if evaluation is needed.
It is impractical to implement the same in many cases as it requires substantial
software simulation.
LISP, Prolog use lazy rule.

In general, implementations use a mixture of two techniques.
LISP – functions split into two categories
SNOBOL – programmer-defined operations always receive evaluated operands

language-defined operations receive unevaluated operands

2. Side Effects
The use of operations may have side effects in expressions

c / func(y) + c
r-value of c must be fetched and func(y) must be evaluated before division.
If fun(y) has the side effect of modifying the value of c, the order of evaluation is
critical.

Problems with Evaluation of Expressions
3. Short-circuit Boolean Expression

If ((X == 0) || (Y/X < Z) {……..}
do {……} while ((I > UB) && (A[I] < B))

Evaluation of second operand of Boolean expression may lead to an error
condition (division by zero, subscript range error).
In C -- The left expression is evaluated first and second expression is evaluated

only when needed.

In many languages, both operands are evaluated before boolean expression is
Evaluated

ADA includes two special Boolean operations
and then , or else
if (X = 0) or else (Y/X > Z) then

can’t fail

Sequential Control within Statement
1. Basic Statements

i) Assignment Statement
Assignment operator (=), compound assignment operator (+=)

MOVE A TO B. - COBOL
ii) Input and Output Statement

printf, scanf
iii) Declaration Statement

int age;
iv) GoTo statement

Explicit sequence control statement. Used to branch conditionally
from one point to another in the program
int a, b;

Read:
scanf (“%d”, &a);
if (a == 0) goto Read;
y = sqrt(x);
prinf(“%d”, y);
goto Read;

Sequential Control within Statement
1. Basic Statements

v) Break Statement
An early exit from a loop can be accomplished by using break statement.

2. Statement Level Sequence Control
i) Implicit Sequence Control

The natural or default programming sequence of a PL is called implicit
sequence. They are of 3 types.
a) Composition Type
Standard form of implicit sequence. Statements placed in order of execution.
b) Alternation Type

There are two alternate statement sequence in the program, the program
chooses any of the sequence but not both at same type

c) Iteration Type
Here normal sequence is given to statements but the sequence repeats
itself for more than one time.

ii) Explicit Sequence Control
The default sequence is altered by some special statements
a) Use of Goto statement b) Use of Break Statement

Sequential Control within Statement
3. Structured Sequence Control

a) Compound Statement
Collection of two or more statements may be treated as single statement.
begin /* ----- Pascal { /* C

…………….. …………….
end }

b) Conditional Statements
if (conditional exp) then …….statements endif
if (conditional exp) then …….statements else …..statements endif
if (conditional exp) then …….statements

elseif (conditional exp) then … statements
else …. statements …endif

switch (exp) { case val1: …statements break;
val2: ….statetments break;

default: statements break;}
c) Iteration Statements

do {…….} while (conditional exp)
while (conditional exp) { …………}
for (initialization; test condition; increment) { ……….}

Subprogram Sequence Control
Subprogram sequence control is related to concept:

How one subprogram invokes another and called subprogram
returns to the first.

Simple Call-Return Subprograms
• Program is composed of single main program.
• During execution It calls various subprograms which may call

other subprograms and so on to any depth
• Each subprogram returns the control to the program/subprogram

after execution
• The execution of calling program is temporarily stopped during

execution of the subprogram
• After the subprogram is completed, execution of the calling

program resumes at the point immediately following the call
Copy Rule

The effect of the call statement is the same as would be if the call
statement is replaced by body of subprogram (with suitable
substitution of parameters)

We use subprograms to avoid writing the same structure in program
again and again.

Subprogram Sequence Control
Simple Call-Return Subprograms

The following assumptions are made for simple call return structure
i) Subprogram can not be recursive
ii) Explicit call statements are required
iii) Subprograms must execute completely at call
iv) Immediate transfer of control at point of call or return
v) Single execution sequence for each subprogram
Implementation
1. There is a distinction between a subprogram definition and subprogram

activation.
Subprogram definition – The written program which is translated into a template.
Subprogram activation – Created each time a subprogram is called using the

template created from the definition
2. An activation is implemented as two parts

Code Segment – contains executable code and constants
Activation record – contains local data, parameters & other data items

3. The code segment is invariant during execution. It is created by translator and
stored statically in memory. They are never modified. Each activation uses the
same code segment.

4. A new activation record is created each time the subprogram is called and is
destroyed when the subprogram returns. The contents keep on changing while
subprogram is executing

Subprogram Sequence Control
Two system-defined pointer variables keep track of the point at which program is
being executed.
Current Instruction Pointer (CIP)

The pointer which points to the instruction in the code segment that is
currently being executed (or just about to be) by the hardware or software
interpreter.

Current Environment Pointer (CEP)
Each activation record contains its set of local variables. The activation
record represents the “referencing environment” of the subprogram.
The pointer to current activation record is Current Execution Pointer.

Execution of Program
First an activation for the main program is created and CEP is assigned to
it. CIP is assigned to a pointer to the first instruction of the code segment
for the subprogram.
When a subprogram is called, new assignments are set to the CIP and
CEP for the first instruction of the code segment of the subprogram and
the activation of the subprogram.
To return correctly from the subprogram, values of CEP and CIP are
stored before calling the subprogram. When return instruction is reached,
it terminates the activation of subprogram, the old values of CEP and CIP
that were saved at the time of subprogram call are retrieved and
reinstated.

Recursive Subprograms
Recursive Subprograms
Recursion is a powerful technique for simplifying the design of algorithms.

Recursive subprogram is one that calls itself (directly or indirectly) repeatedly
having two properties
a) It has a terminating condition or base criteria for which it doesn’t call itself
b) Every time it calls itself, it brings closer to the terminating condition

In Recursive subprogram calls A subprogram may call any other subprogram
including A itself, a subprogram B that calls A or so on.

The only difference between a recursive call and an ordinary call is that the
recursive call creates a second activation of the subprogram during the lifetime
of the first activation.

If execution of program results in chain such that ‘k’ recursive calls of
subprogram occur before any return is made. Thus ‘k+1’ activation of
subprogram exist before the return from kth recursive call.

Both CIP and CEP are used to implement recursive subprogram.

Exception and Exception Handlers
Type of Bugs -

Logic Errors – Errors in program logic due to poor understanding of the
problem and solution procedure.

Syntax Errors – Errors arise due to poor understanding of the language.

Exceptions are runtime anomalies or unusual conditions that a program
may encounter while executing.
eg. Divide by zero, access to an array out of bounds, running out of

memory or disk space

When a program encounters an exceptional condition, it should be
Identified and dealt with effectively.

Exception and Exception Handlers
Exception Handling –
It is a mechanism to detect and report an ‘exceptional circumstance” so
that appropriate action can be taken. It involves the following tasks.
• Find the problem (Hit the exception)
• Inform that an error has occurred (Throw the exception)
• Receive the error information (catch the expression)
• Take corrective action (Handle the exception)
main()
{ int x, y;

cout << “Enter values of x and y”;
cin >>x>>y;

try {
if (x != 0)

cout “y/x is =“<<y/x;
else

throw(x);
}

catch (int i) {
cout << “Divide by zero exception caught”;

}
}

Exception and Exception Handlers
try – Block contains sequence of statements which may generate exception.

throw – When an exception is detected, it is thrown using throw statement

catch – It’s a block that catches the exception thrown by throw statement and
handles it appropriately.

catch block immediately follows the try block.

The same exception may be thrown multiple times in the try block.

There may be many different exceptions thrown from the same try block.

There can be multiple catch blocks following the same try block handling
different exceptions thrown.

The same block can handle all possible types of exceptions.
catch(…)
{

// Statements for processing all exceptions
}

Exception and Exception Handlers
procedure sub1()
divide_zero exception;
wrong_array_sub exception;

---------------- other exceptions
begin

if x = 0 then raise divide_zero;

exception
when divide_zero =>

----------------- handler for divide-zero
when array_sub =>

------------------ handler for array sub
end;

Exception and Exception Handlers
Propagating an Exception –

If an handler for an exception is not defined at the place where an
exception occurs then it is propagated so it could be handled in the calling
subprogram. If not handled there it is propagated further.

If no subprogram/program provides a handler, the entire program is
terminated and standard language-defined handler is invoked.

After an exception is handled –
What to do after exception is handled?
Where the control should be transferred?

Should it be transferred at point where exception was raised?

Should control return to statement in subprogram containing handler
after it was propagated?

Should subprogram containing the handler be terminated normally and
control transferred to calling subprogram? – ADA

Depends on language to language

COROUTINES
COROUTINES –

Coroutines are subprogram components that generalize subroutines to
allow multiple entry points and suspending and resuming of execution at
certain locations.

Coroutine A Coroutine A

COROUTINES
Comparison with Subroutines
1. The lifespan of subroutines is dictated by last in, first out (the last

subroutine called is the first to return); lifespan of coroutines is dictated
by their use and need,

2. The start of the subroutine is the only point entry. There might be multiple
entries in coroutines.

3. The subroutine has to complete execution before it returns the control.
Coroutines may suspend execution and return control to caller.

Example: Let there be a consumer-producer relationship where one routine
creates items and adds to the queue and the other removes from the
queue and uses them.

var q := new queue
coroutine produce coroutine consume
loop loop

while q is not full while q is not empty
create some new items remove some items from q
add item to q use the items
yield to consume yield to produce

COROUTINES
Implementation of Coroutine

Only one activation of each coroutine exists at a time.
A single location, called resume point is reserved in the activation record
to save the old ip value of CIP when a resume instruction transfer control
to another subroutine.

Execution of resume B in coroutine A will involve the following steps:

• The current value of CIP is saved in the resume point location of activation
record for A.

The ip value in the resume point location is fetched from B’s activation record
and assigned to CIP so that subprogram B resume at proper location

SCHEDULED SUBPROGRAMS
Subprogram Scheduling

Normally execution of subprogram is assumed to be initiated immediately
upon its call
Subprogram scheduling relaxes the above condition.

Scheduling Techniques:

1. Schedule subprogram to be executed before or after other subprograms.
call B after A

2.Schedule subprogram to be executed when given Boolean expression is true
call X when Y = 7 and Z > 0

3. Schedule subprograms on basis of a simulated time scale.
call B at time = Currenttime + 50

4. Schedule subprograms according to a priority designation
call B with priority 5

Languages : GPSS, SIMULA

